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The gene that encodes 6-aminolevlinic acid dehydratase (ALAD) has a polymorphism that may
modify lead toxicokinetics and ultimately influence individual susceptibility to lead poisoning.
To evaluate the effect of the ALAD polymorphism on lead-mediated outcomes, a cross-sectional
study of male employees ftom a lead-zinc smelter compared associations between blood lead
concentration and markers ofheme synthesis and semen quality with respect to ALAD genotype.
Male employees were recruited via postal questionnaire to donate blood and urine for analysis of
blood lead, zinc protoporphyrin (ZPP), urinary coproporphyrin (CPU), and ALAD genotype,
and semen samples for semen analysis. Of the 134 workers who had ALAD genotypes complet-
ed, 114 (85%) were ALAD1-1 (ALAD1) and 20 (15%) were ALAD1-2 (ALAD2). The mean
blood lead concentrations for ALAD1 and ALAD2 were 23.1 and 28.4 pdil (p = 0.08), respec-
tively. ZPP/heme ratios were higher in ALAD1 workers (68.6 vs. 57.8 pmol/mol; p = 0.14), and
the slope of the blood lead ZPP linear relationship was greater for ALADI (2.83 vs. 1.50, p =

0.06). No linear relationship between CPU and blood lead concentration was observed for either
ALAD1 or ALAD2. The associations of blood lead concentration with ZPP, CPU, sperm count,
and sperm concentration were more evident in workers with the ALADI genotype and blood
lead concentritions .40 pg/di. The. ALAD genetic polymorphism appears to modify the associa-
tion between blood lead concentration and ZPP. However, consistent modification of effects
were not found for CPU, sperm count, or sperm concentration. Key work 8-aminolevulinic
acid dehydratase, coproporphyrin, genotype, lead, semen, smelters, zinc protoporphyrin.
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Lead is recognized as a cause of secondary
porphyria resulting from heme synthesis
inhibition, characterized by elevated levels
of blood 6-aminolevulinic acid (ALA) and
zinc protoporphyrin (ZPP) and urinary
ALA and coproporphyrin (CPU) (1). The
biological effects of lead can be detected at
blood lead concentrations below current
U.S. occupational health protection stan-
dards, which require medical removal in
cases of repeated blood lead concentrations
exceeding 50 pg/dl or one blood lead con-
centration exceeding 60 pg/dl (2).
Biological markers of heme synthesis inhibi-
tion can reveal the effects of lead at various
stages in the heme synthesis pathway. Lead
inhibits the second enzyme in the pathway,
aminolevulinic acid dehydratase (ALAD),
which synthesizes porphobilinogen from
ALA (3). Decreased ALAD activity results
in an increase of free ALA, the presence of
which is postulated as one mechanism for
the neurotoxic effects of lead (4). The
action of lead at this point in the heme syn-
thesis pathway is estimated by measuring
the activity of ALAD in blood or the con-
centration of ALA in blood or urine. The

formation of protoporphyrinogen IX from
coproporphyrinogen III is inhibited by
lead, resulting in an increase in CPU.
Inactivation of coproporphyrinogen oxi-
dase or impaired transport of copropor-
phyrinogen into mitochondria may under-
lie this effect (5). Lead also interferes with
the chelation of iron into protoporphyrin
IX to form heme. Whether the mechanism
is due to ferrochetalase inhibition is
unclear (6). Instead of heme, zinc proto-
porphyrin (ZPP) is formed. ZPP is consid-
ered a sensitive marker of lead exposure
and is a commonly used marker of lead-
induced heme synthesis inhibition.

The determinants of lead kinetics and
individual susceptibility to lead toxicity in
humans are not clearly defined, despite
considerable experimental animal research.
Interindividual variation in the effects of
lead exposure is probably governed by a
complex web of susceptibility that includes
the type and route of exposure, nutritional
status, gender, age, and genetic profile. A
possible genetic component of variation in
the bodily response to lead exposure is the
gene that encodes ALAD.

ALAD is encoded by a single gene with
two common alleles, ALAD1 and ALAD2,
which are expressed as three distinct pheno-
types: ALAD 1-1, ALAD 1-2, and ALAD2-2
(7). ALAD2, the less common variant, is
prevalent in 10-20% of the Caucasian pop-
ulation (7-11). This polymorphism appears
to modify the toxicokinetics of lead
(12,13), and the presence of the ALAD2
allele has been associated with higher blood
lead levels in lead-exposed workers and chil-
dren (11,14). There are conflicting findings
as to whether ALAD2 carriers are more sus-
ceptible to the ultimate health effects of
environmental lead exposure. The ALAD2
genotype putatively enhances red cell bind-
ing of lead, which may increase blood lead
burden and thus be viewed as harmful (15).
Alternatively, the ALAD2 genotype may be
associated with reduced lead deposition in
other body compartments and may thus
protect against systemic toxicity including
impaired heme synthesis (12). This study
describes the interaction of the effects of
lead and the presence of the ALAD poly-
morphism on markers of heme synthesis
and reproductive health in a population of
male lead smelter workers.

Methods
This cross-sectional study was part of a larg-
er study on the effects of occupational lead
exposure on male reproductive health con-
ducted at a lead-zinc smelter in Trail,
British Columbia (16). Male employees of
the smelter (n = 2,469) were recruited by
postal questionnaire to participate in the
study. Volunteers were solicited to donate
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semen, blood, and urine samples. The study
protocol was approved by the University of
Washington Human Subjects Committee,
and informed consent for study participa-
tion was obtained from the volunteers.
Venous blood samples were drawn by the
company occupational health nurse into
EDTA-containing tubes. The samples were
refrigerated at 40C until analyzed for blood
lead and ZPP. Blood lead concentrations
were measured using graphite furnace
atomic absorption spectrophotometry (17).
ZPP levels were ascertained by hematofluo-
rometry (18) and reported as ZPP/heme
ratios; residual blood samples were then
stored at -20°C. ALAD genotype was deter-
mined for each worker for which a residual
blood sample was available. Genotyping for
ALAD was performed by the polymerase
chain reaction method of Wetmur (7) with
protocol modifications described by Smith
et al. (13).

Spot morning-void urine samples were
collected by the workers and delivered to
the laboratory the day of or the day after
the blood was drawn and were stored at
-200C until analyzed. Porphyrin profiles
were assessed by HPLC-spectrofluoromet-
ric procedures (19). CPU was expressed as
a concentration by volume (micrograms
per liter) and by weight (micrograms per
gram creatinine).

Semen samples were collected at home
or on-site after a requested 48-hr period of
abstinence from sexual activity and deliv-
ered to the field laboratory within 1 hr of
collection. A complete semen analysis was
performed according to the World Health
Organization protocol (20Q. The results for
sperm concentration and total sperm
count, previously reported to be associated
with blood lead concentration in this pop-
ulation (16), are presented here.

Data were initially explored using cor-
relation analyses and scatter plots. Mean
blood lead, ZPP/heme ratio, CPU, sperm
count, and sperm concentration were com-
pared by ALAD genotype. The relation-
ships between blood lead concentration
and markers of heme synthesis inhibition
(ZPP and CPU) and sperm count and con-
centration were evaluated using multiple
linear regression with separate models for
each ALAD genotype and both genotypes
combined (21). The slopes of the blood
lead ZPP associations for the two geno-
types were compared in a model with an
interaction term for blood lead concentra-
tion and ALAD genotype. Age adjustment
was performed in all models.

An additional analysis was conducted
in reference to blood lead levels at or above
regulatory action levels. Mean ZPP and
CPU and geometric means of sperm count

and sperm concentration were compared
by genotype and blood lead concentration
less than and greater than or equal to 40
pg/dI. This cutpoint was established based
on an Occupational Safety and Health
Administration worker health protection
criterion that requires additional monitor-
ing of any worker with a blood lead con-
centration >40 pg/dl. Removal from work
is not required until the worker has repeat-
ed measures >50 pg/dl or a single measure-
ment .60 pg/dl (2).

Results
Blood samples were donated by 152 workers
(16), among whom there was sufficient
residual sample to determine ALAD geno-
type for 134 workers. Porphyrin profiles
could be determined for 119 of the geno-
typed workers. One hundred fourteen
(85%) of the 134 workers were homozygous
for the ALAD type 1 (ALADI-1) and 20
(15%) were heterozygous (ALADI-2)
(Table 1). No workers were homozygous
for the type 2 allele. Compared to workers
with ALAD2, workers with ALADI were
slightly older (mean age 40.1 vs. 39.0 years)
and had slightly longer average tenure (17.5
vs. 15.8 years), but fewer years in the higher
lead exposure areas of the smelter (4.3 vs.
4.7). Semen samples were available for 106
workers among those for whom ALAD
genotyping was completed: 89 were ALAD1
and 17 were ALAD2. The mean blood lead
concentration of workers with ALAD2 was

greater than those with ALAD1 (28.4 vs.
23.1 pg/dl, p = 0.08). In contrast, the
ZPP/heme ratios were lower for workers
with the ALAD2 genotype (57.8 vs. 68.6
jmol/mol, p = 0.14). Differences in geomet-
ric mean sperm count and concentration
were minimal.

The linear associations between blood
lead, ZPP, and ALAD genotype are dis-
played in Table 2 and Figures 1 and 2. As
expected, blood lead concentration was
strongly predictive ofZPP (R2 = 0.47). The
relationship between blood lead and ZPP
appeared to be modified by ALAD geno-
type. The slope of this relationship for
ALADI workers was 2.83 (p<0.0001),
compared to 1.50 (p = 0.0004) for ALAD2
workers. The coefficient for the interaction
ofALAD genotype and blood lead level on
ZPP was 1.30 (p = 0.06). Urinary copro-
porphyrin excretion did not vary by blood
lead concentration on a linear scale for
either genotype (R<0.03 for all models).
The log values of total sperm count and
sperm concentration were inversely corre-
lated with blood lead concentration (p =
0.02 and 0.10, respectively), but this asso-
ciation did not vary by ALAD genotype.

Differences for ZPP and CPU levels by
ALAD genotype were eviden when work-
ers with blood lead levels below and greater
than or equal to 40 lig/dl were compared
(Table 3). These differences were more
pronounced at or above 40 pg/dl. Mean
CPU concentration for ALADI-1 was

Table 1. Distribution of age, blood lead concentration, indicators of heme synthesis, and sperm count and
concentration by 8-aminolevulinic acid dehydratase (ALAD) genotype in lead smelter workers

Age
Blood lead (pg/dl)
ZPP (pmol/mol heme)
Coproporphyrin
Creatinine-adjusted coproporphyrin
Sperm concentration
Total sperm count
SD, standard deviation.
&Geometric mean and geometric SD.

ALAD1-1 (n= 114)
Mean ± SD
40.1 ±7.1
23.1 ± 12.2
68.6 ± 48.0
47.4 ± 41.6
20.8 ± 19.5
60.3 ± 3.38
134 ± 3.7a

ALAD1-2 (n= 20)
Mean ± SD
39.0 ± 7.8
28.4 ± 11.7
57.8 ± 24.4
41.6 ± 36.8
19.3 ± 15.7
60.3 ± 2.18
148 ± 2.5a

p-Value
0.58
0.08
0.14
0.59
0.76
0.96
0.91

Table 2. Linear regression models of zinc protoporphyrin regressed on blood lead concentration by 8-
aminolevulinic acid dehydratase (ALAD)
Model n Variables,' p-Value R2
Combined 134 Blood lead 2.53 <0.0001 0.47

Age 0.76 0.07
ALAD1-1 114 Blood lead 2.83 <0.0001 0.52

Age 0.96 0.04
ALAD1-2 20 Blood lead 1.50 0.0004 0.57

Age -0.74 0.18
Interaction 134 Blood lead 1.53 0.02 0.52

Age 0.68 0.09
ALAD -11.59 0.58
ALAD*Blood lead 1.30 0.06

&Variable coding: ALAD: ALAD1 = 1, ALAD2 = 0; blood lead concentration = pg/dI; zinc protoporphyrin = pmol/mol heme; age = years.
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Figure 1. Zinc protoporphyrin (ZPP) level by current blood lead concentration
for workers with ALAD1 -1 genotype.

threefold greater than for ALAD 1-2 (46.5
vs. 13.6 pg/l). A similar association, albeit
attenuated, was seen for the creatinine-
adjusted CPU. CPU did not, however,
increase with increasing blood lead concen-
tration as would be expected. The effect of
blood lead concentrations >40 pg/dl on
total sperm count and sperm concentration
were most apparent in workers with the
ALAD type 1 genotype. The geometric
mean sperm count and concentration val-
ues for ALAD1 workers in this blood lead
range were approximately half those with
ALAD type 2 genotype. These results,
however, are not statistically significant, as
they are based on only four workers with
ALAD2 and a blood lead concentration
>40 jig/dl.

Discussion
The association of blood lead concentra-
tion and ZPP was modified by ALAD
genotype in this population of male lead
smelter workers. Despite having lower
blood lead concentrations, workers with
the ALADI genotype had, on average,
higher ZPP levels compared to those with
ALAD2. This difference was most pro-
nounced at blood lead levels >40 pg/dl.

The nonrandom method of worker
recruitment, the study sample size, and the
absence of female workers were the primary
limitations of this cross-sectional study.
The smelter workers volunteered to partici-
pate by donating a blood sample following
recruitment via a mailed questionnaire.
The participation rate was low, in large
part due to the semen sample donation
requirement of the original study; never-
theless, the volunteers were similar to the
overall population with respect to age,
length of employment, work area, and
blood-lead monitoring history (16). It is
unlikely that ALAD genotype played a role
in a worker's decision to participate. The
prevalence of the ALAD1-2 allele was in
the expected range of 10-20% (7-11). The
small number of workers with the variant
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Figure 2. Zinc protoporphyrin (ZPP) level by current blood lead concentra-
tion for workers with ALAD1-2 genotype.

Table 3. Zinc protoporphyrin, coproporphyrin, sperm count, and sperm concentration by 6-aminolevulinic
acid dehydratase (ALAD) genotype and blood lead concentration above and below 40 pg/dl

ALAD1-1 ALAD 1-2

Blood lead (pg/dl) n Mean ± SD n Mean ± SD p-Value

Zinc protoporphyrin <40 98 55.7 ± 27.1 15 48.5 ± 12.5 0.10
(pmol/mol heme) .40 16 147.3 ± 70.3 5 85.6 ± 31.5 0.03
Coproporphyrin <40 90 47.5 ± 42.9 13 50.3 ± 38.1 0.81
(pg/I) .40 12 46.5 ± 31.6 4 13.6 ± 7.8 0.01

Creatinine-adjusted <40 90 21.2 ± 20.1 13 22.9 ± 15.9 0.76
coproporphyrin (pg/g) .40 12 18.4 ± 14.0 4 7.5 ± 7.2 0.16
Sperm concentration <40 82 63.6 (2.9)a 13 61.1 (2.2)a 0.89
(million sperm/mI) .40 7 32.2 (7.4)a 4 61.8 (1.9)a 0.54

Total sperm count <40 82 152 (3.4)a 13 155 (3.4)a 0.95
(million sperm) .40 7 58 (10.0)a 4 116 (3.0)a 0.59

SD, standard deviation.
aGeometric mean (geometric SD).

allele represented a sparse distribution of
blood lead concentrations, with few
exceeding 40 pg/dl. The statistical power of
the study to model the exposure-gene
interaction was limited accordingly. The
absence of female workers limits the gener-
alizability of these data particularly insofar
as gender may modify the effects of lead on
heme synthesis (22).

The ALAD polymorphism appears to
influence the toxicokinetics of lead.
However, the evidence of either allele pre-
disposing an individual to the adverse health
effects of lead is inconclusive. In the current
study mean blood lead levels of workers
with the ALAD2 genotype were somewhat
higher than those with ALADI. Similar
observations have been made of occupation-
ally exposed adults and environmentally
exposed children (11,12,14). Despite the
higher blood lead concentrations, the associ-
ation between blood lead and ZPP levels of
ALAD2 workers was attenuated. This phe-
nomenon was also reported in a study of
Korean storage-battery-manufacturing
workers where a subgroup of workers with
the highest lead exposures had lower ZPP
concentrations when the ALAD2 genotype
was present (12).

Suggestive of a similar mechanism,
CPU concentrations were lower in workers
with the ALAD2 allele when blood lead

levels exceeded 40 pg/dl. However, this
observation may be an artifact because the
overall CPU concentration was not associ-
ated with blood lead concentration.
Intraindividual variation of urinary copro-
porphyrin concentration, especially mea-
sured in spot samples, can be large (1),
which limits its utility as a biomarker of
heme synthesis toxicity. The semen quality
parameters of total sperm count and sperm
concentration were also suggestive of a pos-
sible protective effect of ALAD2 genotype
for workers with blood lead levels .40
pg/dl. Although these differences were
based on too few individuals to be statisti-
cally stable, they do contribute evidence
that the ALAD polymorphism may modify
the health effects of lead.

A mechanism for the modified associa-
tions between blood lead and ZPP by
ALAD genotype has not been clearly estab-
lished. It has been hypothesized that the
variant form ofALAD (ALAD2) may bind
lead more tightly than ALAD 1 and make it
less bioavailable (23). Should this be the
case, given constant exposure, less lead
would be bioavailable for inhibition of
heme synthesis downstream of ALAD in
this biochemical pathway. The result of
this enhanced protein binding of lead in
ALAD2 carriers would be a decrease in the
amount of bioavailable lead to inactivate
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coproporphyrinogen oxidase or to inhibit
the insertion of iron into protoporphyrin
IX. This then would yield lower levels of
ZPP and CPU.

Bound lead retained longer in erythro-
cytes could ultimately increase risks for late
effects, such as kidney damage and mildly
increased hemoglobin turnover. Smith et al.
(13) reported higher blood urea nitrogen
values in ALAD2 carriers and Schwartz et al.
(24) found shifts in hemoglobin subtypes in
ALAD2 carriers compared to ALAD1 carri-
ers. This theory is also supported by appar-
ent differential partitioning by ALAD geno-
type of lead in bone of carpenters with low
blood lead levels (13). The theoretical differ-
ential binding of lead by the ALAD
isozymes does not indicate greater suscepti-
bility to lead for persons with the ALAD2
genotype. In the current study, apparent
inhibition of heme synthesis (elevated ZPP)
was more pronounced in workers with the
ALAD1 genotype, suggesting that they,
rather than the workers with ALAD2 and
greater blood lead concentrations, are pre-
disposed to the adverse hematologic effects
of lead. The neurological effects of lead may
be similarly altered. An elevated concentra-
tion of plasma ALA was shown to be higher
in battery workers with homozygous
ALAD 1 genotype compared to heterozygous
ALAD 1-2 workers (25). This effect was
independent of blood lead concentration
and age. To the extent that the increased
ALA concentration contributes to the neu-
rological effects of lead, persons with
homozygous ALAI genotype may be more
susceptible to the neurological effects of
lead. Though based on few cases, adoles-
cents with the ALAD2 genotype scored
higher than those with ALAD 1 on a battery
of neuropsychological tests (26). Conversely,
ALAD2 carriers with low blood lead con-
centrations showed more evidence of
impaired renal function (13).

The role of the ALAD genetic polymor-
phism in conferring susceptibility to the
adverse health outcomes associated with lead
exposure has yet to be clearly defined. The

presence of the ALAD type 2 allele appears
to affect the distribution of lead in the body
and to alter the effect of lead exposure on
heme synthesis; however, the causes and
consequences of these associations are specu-
lative. In this study a previously observed
association between ALAD genotype and
ZPP was confirmed. This sensitive marker
of the effects of lead exposure was modified
by the presence of the ALAD2 allele, but no
consistent effects were detected for CPU
and sperm count or concentration.
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